Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 86(9): 1206-1233, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37494657

RESUMO

Dama gazelle is a threatened and rarely studied species found primarily in northern Africa. Human pressure has depleted the dama gazelle population from tens of thousands to a few hundred individuals. Since 1970, a founder population consisting of the last 17 surviving individuals in Western Sahara has been maintained in captivity, reproducing naturally. In preparation for the future implementation of assisted reproductive technology, certain aspects of dama gazelle reproductive biology have been established. However, the role played by semiochemical-mediated communications in the sexual behavior of dama gazelle remains unknown due partially to a lack of a neuroanatomical or morphofunctional characterization of the dama gazelle vomeronasal organ (VNO), which is the sensory organ responsible for pheromone processing. The present study characterized the dama gazelle VNO, which appears fully equipped to perform neurosensory functions, contributing to current understanding of interspecies VNO variability among ruminants. By employing histological, lectin-histochemical, and immunohistochemical techniques, we conducted a detailed morphofunctional evaluation of the dama gazelle VNO along its entire longitudinal axis. Our findings of significant structural and neurochemical transformation along the entire VNO suggest that future studies of the VNO should take a similar approach. The present study contributes to current understanding of dama gazelle VNO, providing a basis for future studies of semiochemical-mediated communications and reproductive management in this species. RESEARCH HIGHLIGHTS: This exhaustive immunohistological study of the vomeronasal organ (VNO) of the dama gazelle provides the first evidence of notable differences in the expression of neuronal markers along the rostrocaudal axis of the VNO. This provides a morphological basis for the implementation of pheromones in captive populations of dama gazelle.

2.
Brain Struct Funct ; 227(3): 881-899, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34800143

RESUMO

The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett's wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett's wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior-posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett's wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseus.


Assuntos
Neuroanatomia , Órgão Vomeronasal , Animais , Mamíferos , Bulbo Olfatório/metabolismo , Roedores
3.
Animals (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011198

RESUMO

We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques were used to extract the olfactory bulbs. The samples were subjected to hematoxylin-eosin and Nissl stains, histochemical (Ulex europaeus agglutinin, Lycopersicon esculentum agglutinin) and immunohistochemical labelling (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2, SMI-32, growth-associated protein 43). Microscopically, the meerkat AOB lamination pattern is more defined than the dog's, approaching that described in cats, with well-defined glomeruli and a wide mitral-plexiform layer, with scattered main cells and granular cells organized in clusters. The degree of lamination and development of the meerkat MOB suggests a macrosmatic mammalian species. Calcium-binding proteins allow for the discrimination of atypical glomerular subpopulations in the olfactory limbus between the MOB and AOB. Our observations support AOB functionality in the meerkat, indicating chemosensory specialization for the detection of pheromones, as identified by the characterization of the V1R vomeronasal receptor family and the apparent deterioration of the V2R receptor family.

4.
Sci Rep ; 10(1): 13304, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764621

RESUMO

The vomeronasal system (VNS) is responsible for the perception mainly of pheromones and kairomones. Primarily studied in laboratory rodents, it plays a crucial role in their socio-sexual behaviour. As a wild rodent, the capybara offers a more objective and representative perspective to understand the significance of the system in the Rodentia, avoiding the risk of extrapolating from laboratory rodent strains, exposed to high levels of artificial selection pressure. We have studied the main morphological and immunohistochemical features of the capybara vomeronasal organ (VNO) and accessory olfactory bulb (AOB). The study was done in newborn individuals to investigate the maturity of the system at this early stage. We used techniques such as histological stains, lectins-labelling and immunohistochemical characterization of a range of proteins, including G proteins (Gαi2, Gαo) and olfactory marking protein. As a result, we conclude that the VNS of the capybara at birth is capable of establishing the same function as that of the adult, and that it presents unique features as the high degree of differentiation of the AOB and the active cellular migration in the vomeronasal epithelium. All together makes the capybara a promising model for the study of chemical communication in the first days of life.


Assuntos
Roedores/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/metabolismo , Animais , Animais Recém-Nascidos , Imuno-Histoquímica , Lectinas/metabolismo
5.
J Chem Neuroanat ; 31(3): 200-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16488575

RESUMO

The present work describes for the first time the anatomical distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity and NADPH-d activity in the basal forebrain of the dog. As in other species, small, intensely nNOS-immunoreactive cells were seen within the olfactory tubercle, caudate nucleus, putamen, nucleus accumbens and amygdala. In addition, a population of mixed large and small nNOS positive cells was found in the medial septum, diagonal band and nucleus basalis overlapping the distribution of the magnocellular cholinergic system of the basal forebrain. Our results show that the distribution of NOS containing neurons in these nuclei in the dog is more extensive and uniform than that reported in rodents and primates. When double labeling of nNOS and NADPH-d was performed in the same tissue section most neurons were double labeled. However, a considerable number of large perikarya in the diagonal band and nucleus basalis appeared to be single labeled for nNOS. Thought a certain degree of interference between the two procedures could not be completely excluded, these findings suggest that NADPH-d histochemistry, which is frequently used to show the presence of NOS, underestimates the potential of basal forebrains neurons to produce nitric oxide. In addition, a few neurons mainly localized among the fibers of the internal capsule, appeared to be labeled only for NADPH-d. These neurons could be expressing a different isoform of NOS, not recognized by our anti-nNOS antibody, as has been reported in healthy humans and AD patients.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Animais , Cães , Feminino , Imuno-Histoquímica , Masculino , NADPH Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...